Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Nucl Med ; 63(2): 270-273, 2022 02.
Article in English | MEDLINE | ID: covidwho-1753320

ABSTRACT

The aim of this study was to assess the temporal evolution of pulmonary 18F-FDG uptake in patients with coronavirus disease 2019 (COVID-19) and post-COVID-19 lung disease (PCLD). Methods: Using our hospital's clinical electronic records, we retrospectively identified 23 acute COVID-19, 18 PCLD, and 9 completely recovered 18F-FDG PET/CT patients during the 2 peaks of the U.K. pandemic. Pulmonary 18F-FDG uptake was measured as a lung target-to-background ratio (TBRlung = SUVmax/SUVmin) and compared with temporal stage. Results: In acute COVID-19, less than 3 wk after infection, TBRlung was strongly correlated with time after infection (rs = 0.81, P < 0.001) and was significantly higher in the late stage than in the early stage (P = 0.001). In PCLD, TBRlung was lower in patients treated with high-dose steroids (P = 0.003) and in asymptomatic patients (P < 0.001). Conclusion: Pulmonary 18F-FDG uptake in COVID-19 increases with time after infection. In PCLD, pulmonary 18F-FDG uptake rises despite viral clearance, suggesting ongoing inflammation. There was lower pulmonary 18F-FDG uptake in PCLD patients treated with steroids.


Subject(s)
COVID-19/diagnostic imaging , Fluorodeoxyglucose F18/pharmacokinetics , Lung/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
2.
AJR Am J Roentgenol ; 217(5): 1206-1216, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1559710

ABSTRACT

BACKGROUND. COVID-19 vaccination may trigger reactive lymphadenopathy, confounding imaging interpretation. There has been limited systematic analysis of PET findings after COVID-19 vaccination. OBJECTIVE. The purpose of this study was to evaluate the frequency and characteristics of abnormal FDG and 11C-choline uptake on PET performed after COVID-19 vaccination. METHODS. This retrospective study included 67 patients (43 men and 24 women; mean [± SD] age, 75.6 ± 9.2 years) who underwent PET examination between December 14, 2020, and March 10, 2021, after COVID-19 vaccination and who had undergone prevaccination PET examination without visible axillary node uptake. A total of 52 patients received the BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech; hereafter referred to as the Pfizer-BioNTech vaccine), and 15 received the SARS-CoV-2 mRNA-1273 vaccine (Moderna; hereafter referred to as the Moderna vaccine). Sixty-six of the patients underwent PET/CT, and one underwent PET/MRI. Fifty-four PET examinations used FDG, and 13 used 11C-choline. PET was performed a median of 13 and 10 days after vaccination for patients who had received one (n = 44) and two (n = 23) vaccine doses, respectively. Two nuclear medicine physicians independently reviewed images and were blinded to injection laterality and the number of days since vaccination. Lymph node or deltoid SUVmax greater than the blood pool SUVmax was considered positive. Interreader agreement was assessed, and the measurements made by the more experienced physician were used for subsequent analysis. RESULTS. Positive axillary lymph node uptake was observed in 10.4% (7/67) of patients (7.4% [4/54] of FDG examinations and 23.1% [3/13] of 11C-choline examinations); of the patients with positive axillary lymph nodes, four had received the Pfizer vaccine, and three had received the Moderna vaccine. Injection laterality was documented for five of seven patients with positive axillary lymph nodes and was ipsilateral to the positive node in all five patients. PET was performed within 24 days of vaccination for all patients with a positive node. One patient showed extraaxillary lymph node uptake (ipsilateral supraclavicular uptake on FDG PET). Ipsilateral deltoid uptake was present in 14.5% (8/55) of patients with documented injection laterality, including 42.9% (3/7) of patients with positive axillary lymph nodes. Interreader agreement for SUV measurements (expressed as intraclass correlation coefficients) ranged from 0.600 to 0.988. CONCLUSION. Increased axillary lymph node or ipsilateral deltoid uptake is occasionally observed on FDG or 11C-choline PET performed after COVID-19 vaccination with the Pfizer-BioNTech or Moderna vaccine. CLINICAL IMPACT. Interpreting physicians should recognize characteristics of abnormal uptake on PET after COVID-19 vaccination to guide optimal follow-up management and reduce unnecessary biopsies.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Deltoid Muscle/diagnostic imaging , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/etiology , Magnetic Resonance Imaging , Positron Emission Tomography Computed Tomography , 2019-nCoV Vaccine mRNA-1273 , Aged , Axilla/diagnostic imaging , BNT162 Vaccine , Carbon Radioisotopes/pharmacokinetics , Choline/pharmacokinetics , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Male , Radiopharmaceuticals/pharmacokinetics , Retrospective Studies , SARS-CoV-2
3.
AJR Am J Roentgenol ; 217(4): 975-983, 2021 10.
Article in English | MEDLINE | ID: covidwho-1341589

ABSTRACT

As mass COVID-19 vaccination is underway, radiologists are encountering transient FDG uptake in normal or enlarged axillary, supraclavicular, and cervical lymph nodes after ipsilateral deltoid vaccination. This phenomenon may confound interpretation in patients with cancer undergoing FDG PET/CT. In this article, we present our institutional approach for management of COVID-19 vaccine-related lymphadenopathy on FDG PET/CT according to early experience. We suggest performing PET/CT at least 2 weeks after vaccination in patients with a cancer for which interpretation is anticipated to be potentially impacted by the vaccination but optimally 4-6 weeks after vaccination given increased immunogenicity of mRNA vaccines and potentially longer time for resolution than lymphadenopathy after other vaccines. PET/CT should not be delayed when clinically indicated to be performed sooner. Details regarding vaccination should be collected at the time of PET/CT to facilitate interpretation. Follow-up recommendations for postvaccination lymphadenopathy are provided, considering the lymph node's morphology and likely clinical relevance. Consideration should be given to administering the vaccine in the arm contralateral to a unilateral cancer to avoid confounding FDG uptake on the side of cancer. Our preliminary experience and suggested institutional approach should guide radiologists in management of patients with cancer undergoing PET/CT after COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Fluorodeoxyglucose F18/pharmacokinetics , Lymphadenopathy/diagnostic imaging , Lymphadenopathy/etiology , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals/pharmacokinetics , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL